On the Gibbs properties of Bernoulli convolutions

نویسندگان

  • Eric Olivier
  • Nikita Sidorov
چکیده

We consider infinitely convolved Bernoulli measures (or simply Bernoulli convolutions) related to the β-numeration. A matrix decomposition of these measures is obtained in the case when β is a PV number. We also determine their Gibbs properties for β being a multinacci number, which makes the multifractal analysis of the corresponding Bernoulli convolution possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 N ov 2 00 4 On the Gibbs properties of Bernoulli convolutions related to β - numeration in multinacci bases

We consider infinitely convolved Bernoulli measures (or simply Bernoulli convolutions) related to the β-numeration. A matrix decomposition of these measures is obtained in the case when β is a PV number. We also determine their Gibbs properties for β being a multi-nacci number, which makes the multifractal analysis of the corresponding Bernoulli convolution possible.

متن کامل

ar X iv : m at h / 05 02 27 7 v 1 [ m at h . D S ] 1 3 Fe b 20 05 INFINITE BERNOULLI CONVOLUTIONS AS AFFINE ITERATED FUNCTION SYSTEMS

We exploit the fact that the classical Bernoulli systems are con-tractive iterated function systems (IFS) of affine type to prove a number of properties of the infinite Bernoulli convolution measures ν λ. We develop and use a new duality notion for affine IFSs. This duality is based on a natural transfer operator R W , and on an associated random walk process Px. We show that the absolute-squar...

متن کامل

2 7 Ju l 2 00 6 Infinite products of 2 × 2 matrices and the Gibbs properties of Bernoulli convolutions

Nevertheless the normalized rows of Pn(ω) in general do not converge: suppose for instance that all the matrices in M are positive but do not have the same positive normalized left-eigenvector, let Lk such that LkMk = ρkLk. For any positive matrix M , the normalized rows of MM0 n converge to L0 and the ones of MM1 n to L1. Consequently we can choose the sequence (nk)k∈N sufficiently increasing ...

متن کامل

Exchangeable, Gibbs and Equilibrium Measures for Markov Subshifts

We study a class of strongly irreducible, multidimensional, topological Markov shifts, comparing two notions of “symmetric measure”: exchangeability and the Gibbs property. We show that equilibrium measures for such shifts (unique and weak Bernoulli in the one dimensional case) exhibit a variety of spectral properties.

متن کامل

Dutkay and Palle

We exploit the fact that the classical Bernoulli systems are con-tractive iterated function systems (IFS) of affine type to prove a number of properties of the infinite Bernoulli convolution measures ν λ. We develop and use a new duality notion for affine IFSs. This duality is based on a natural transfer operator R W , and on an associated random walk process Px. We show that the absolute-squar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002